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Abstract

In order to examine the influence of initial bubble conditions on bubble rise motion, two-dimensional
direct numerical simulations of the motion of a gas bubble rising in viscous liquids were carried out by
a coupled level set/volume-of-fluid (CLSVOF) method. For dimensionless groups predicting a ‘‘spheri-
cal-cap bubble shape’’ (high Eötvös and low Morton numbers), we have found computationally that solu-
tions depend on initial bubble conditions. Specifically, for spherical-cap bubble areas, we could obtain
computational results of toroidal bubbles or spherical-cap bubbles depending on initial bubble conditions.
On the other hand, we showed for low Eo and high M conditions that initial bubble conditions did not
affect the final state of bubble rise motion.
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1. Introduction

Gas–liquid two-phase flows in which gas bubbles are dispersed in viscous liquids are commonly
encountered in various engineering processes (chemical reactors, nuclear power plants, bioreac-
tors and combustion engines) as well as in nature. It is well identified that the dynamic behavior
of gas bubbles in practical devices show very complicated motions. As is well known, Grace et al.
(1976) and, in a more detailed study, Bhaga and Weber (1981) systematically arranged the motion
of bubbles freely rising in viscous Newtonian liquids. They showed that the Reynolds (Re), Eötvös
(Eo) and Morton (M) numbers were essential for describing a rising bubble (drop) or falling drop
motion because shape and terminal velocity of a bubble or drop were determined by these three
dimensionless numbers. At the same time, the fruits of their studies have provided important fun-
damental knowledge on the bubble rise motion. In the last decade, direct numerical simulation
(DNS) has been recognized and used as an efficient technique for comprehending and revealing
detailed flow structures and mechanisms for bubble motion in viscous liquids. As a consequence,
many numerical studies of rising bubbles/drops have been presented (e.g., Tomiyama et al., 1994;
Sussman and Smereka, 1997; Esmaeeli and Tryggvason, 1998, 1999; Himeno and Watanabe,
1999; Chen et al., 1999; Li et al., 2000; Son, 2001; Bunner and Tryggvason, 2002; Ohta et al.,
2003, 2004). So far, most of the numerical simulations on bubble rise motion have been devoted
to bubble rise dynamics with ‘‘intermediate’’ shape deformations and ‘‘intermediate’’ rise speeds.
In other words, computations have not been sufficiently made for the rising bubble with large
deformations, such as ‘‘skirted’’ and ‘‘spherical-cap’’ shapes and for the rising bubble with large
Re.
Recently, as a very intriguing study, Wu and Gharib (2002) reported that small air bubbles of

diameter range 1–2 mm rising in clean water have two steady shapes; a sphere and an ellipsoid.
Along the same line, Tomiyama et al. (2002) showed experimentally that air bubbles rising
through pure and contaminated water in a surface tension force dominant regime were largely
influenced by an initial shape deformation. In terms of the Eo and M numbers, the conditions
of their study correspond to low Eo and very lowM regions. We remark that the numerical results
of Yang et al. (2003) conflict with the experimental studies by Wu and Gharib (2002) and Tom-
iyama et al. (2002). Yang et al. (2003) report results using 2d-computations (a boundary fitted
numerical method) which are initial-condition independent, whereas Wu and Gharib (2002)
and Tomiyama et al. (2002) report results which are initial-condition dependent. We take the
stance that 3d-computations are required for checking the initial shape dependence for such
low Eo and very low M regions. With the studies of Wu and Gharib (2002), Tomiyama et al.
(2002) and Yang et al. (2003) in mind, let us now reconsider the numerical results of bubble rising
motion for high Eo and low M regions. The high Eo, low M region corresponds to the spherical-
cap bubble area in the correlation diagram presented by Grace et al. (1976) and Bhaga and Weber
(1981). Conversely, a toroidal shaped bubble, quite different from the spherical-cap bubble, has
been numerically reproduced using parameters from the high Eo and low M region (e.g., Tomiy-
ama et al., 1991; Sussman and Smereka, 1997; Chen et al., 1999). So, it would be incorrect to say
that a toroidal bubble reproduced numerically is an improper result. We remark that toroidal air
bubbles in water have been generated by Walters and Davidson (1963). Also, toroidal bubbles
have been observed in the context of Dolphin play by Marten et al. (1996). One hypothesis for
the cause of toroidal bubble formation versus cap bubble formation is due to the fact that at high
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Eo number, an initial bubble whose shape is sufficiently different from a cap shape, will become
unstable resulting in the break-up into a toroidal bubble (see Clift et al., 1978, pp. 339–342),
regarding bubble instability). For the case of a bubble collapsing near a solid wall (Best, 1993),
a toroidal bubble will form due to the lack of mobility of the portion of the bubble nearest the
wall.
Based on previous literature, we shall focus on the effect of initial bubble conditions on the mo-

tion of a gas bubble rising in viscous liquids for high Eo and lowM regions. We remark that Suss-
man and Smereka (1997), have shown a few results indicating initial condition dependence on the
final shape, but their study was not in-depth. The objective of the present study is to computation-
ally investigate how initial bubble conditions influence the final state of spherical-cap bubble ris-
ing motion. This present study was considered using 2d-axisymmetric computations based on a
coupled level-set/volume-of-fluid (CLSVOF) method (Sussman and Puckett, 2000; Sussman,
2003).
2. Numerical analysis

2.1. The CLSVOF method

In this study, we use the CLSVOF method in order to represent and track the interface. The
CLSVOF method is a robust numerical technique that combines some of the advantages of the
volume-of-fluid (VOF) method (Hirt and Nichols, 1981; Puckett et al., 1997) with the level-set
(LS) method (Sussman et al., 1994, 1998). In the VOF method, the volume-of-fluid function F
is used to represent the interface. The values of F correspond to the volume fraction of liquid
in a given computational cell. In other words, F = 0 when a computational cell contains only
gas and F = 1 when a computational cell contains only liquid. If 0 < F < 1, then a computational
cell contains both gas and liquid phases. The VOF method has a great advantage that we can use
accurate algorithms for advecting F so that mass is conserved while still maintaining a sharp rep-
resentation of the interface. Meanwhile, the disadvantage of the VOF method is the fact that tan-
gled and difficult reconstruction procedures are required for determining the slope of the piecewise
linear VOF reconstructed interface. In the LS method, a smooth level-set (distance) function / is
used to track the interface. The interface is implicitly represented by the set of points in which
/ = 0. Liquid and gas regions are defined as / > 0 in the liquid and / < 0 in the gas, respectively.
One of the advantages of the LS method is that we can track and present smoothly the interface.
Also, the LS method allows for computations of two-phase flows with large density and/or viscos-
ity ratios. However, the LS method has the disadvantage that mass is not explicitly conserved. As
a result, we couple the LS function to the VOF function during the reinitialization process. The
CLSVOF method is comprised of a best mix of the advantages of both the VOF and the LS meth-
ods. In the CLSVOF method, the coupling between the LS function and the VOF function occurs
when computing the normal of the reconstructed interface in the VOF calculation process and
also when assigning the LS function with the exact signed normal distance to the reconstructed
interface in the LS calculation process. That is, the piecewise linear approximation (the
volume-of-fluid reconstruction step) for the VOF method is determined using the unit normal vec-
tor n estimated from information of the LS function. In this process, the volume fractions are
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truncated by use of the LS function, and spurious volumes are tactfully removed. Also, the
reinitialized process (correction for losses and gains in mass) for the LS method is achieved
through the use of the reconstructed interface of the VOF method at each new time step. At
t = 0, F is initialized in each computational cell Xi,j (=(x,y)jxi 6 x 6 xi+1 and yj 6 y 6 yj+1) to be
F i;j ¼
1

DxDy

Z
Xi;j

Hð/ðx; y; 0ÞÞdxdy: ð1Þ
Here, H(/) is the Heaviside function,
Hð/Þ ¼ 1 / P 0;

0 otherwise:

�
ð2Þ
2.2. Governing equations

In our study, the two-phase fluid flow is composed of air and a viscous Newtonian liquid. We
assume that the flow in the air and liquid is incompressible. Also, we shall only consider axisym-
metrical problems in 2d-cylindrical coordinates (r,z). Both incompressible fluids are governed by
the continuity equation and momentum equations and the governing equations based on the
CLSVOF method to be solved are as follows:
r � u ¼ 0 ð3Þ
� �� �
ou

ot
þr � ðuuÞ ¼ � rp

qð/Þ þ
1

qð/Þr � l ruþruT � rjðF Þ
qð/Þ rH eð/Þ þ g; ð4Þ
where u expresses velocity of the fluid, t is the time, p is the pressure, l is the viscosity, q is the
density, r is the surface tension coefficient and j is the curvature of the interface. The curvature
at / = 0 is computed to second-order accuracy using the VOF function (Sussman, 2003); the
method is based on reconstructing the height function directly from the VOF function. He(/) is
a smoothed Heaviside function which is introduced to avoid the sharp changes in pressure and
diffusion term at the interface due to large density and/or viscosity ratios. The smoothed Heavi-
side function is defined as
H eð/Þ ¼
1 / > e;
1
2
½1þ /=e þ ð1=pÞ sinðp/=eÞ
 j/j6 e;

0 / < �e:

8><
>: ð5Þ
Here, e is the interface numerical thickness which can be one of 1.0Dx, 2.0Dx or 3.0Dx. Note: Dx
refers to the size of the finest mesh (see Section 3.2). We will describe the details of the interface
numerical thickness in Chapter 4.
The term rj(F) in the dynamic momentum equation (Eq. (4)) represents the surface tension-

induced pressure jump.
Since the interface moves with the fluid particles, the evolution of F and / are given as follows:
oF
ot

þr � ðuF Þ ¼ 0; ð6Þ
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o/

ot

þr � ðu/Þ ¼ 0: ð7Þ
Since the density and viscosity are constant in each fluid, with a jump at the zero level of /, they
can be expressed as
qð/Þ ¼ qGð1� H eð/ÞÞ þ qLH eð/Þ ð8Þ

and
lð/Þ ¼ lGð1� H eð/ÞÞ þ lLH eð/Þ; ð9Þ

where the subscripts G and L refer to the gas and liquid phases, respectively.
The governing equations are solved through a hydrodynamic scheme with second-order accu-

racy (Sussman and Puckett, 2000; Sussman, 2003). Note: the treatment of the interface numerical
thickness and the interface pressure boundary condition are first order accurate because of the
necessary smoothing of the Heaviside function. In our study, the spatial discretization uses sec-
ond-order finite difference techniques. The discrete variables p, / and F are located at the cell cen-
ters and the discrete variable u is located at face centers. We will briefly explain our numerical
method below:

• Velocity and pressure fields are computed based on the variable density approximate projection
method.

• The discretization of the advection term in Eq. (4) uses a second-order upwind predictor–cor-
rector method based on the unsplit Godunov method.

• The time stepping procedure is based on the second-order Runge–Kutta method for the advec-
tion term and the second order Crank–Nicholson method for the viscous term.

• The interface curvature at / = 0 is estimated using the VOF function with second-order
accuracy.

• The CLSVOF advection step is based on second-order operator split advection algorithms for
both the LS and VOF functions (Eqs. (3) and (4)).

Finally, the solution was advanced through time in finite size steps which are limited in magnitude
by various numerical stability considerations.
3. Computational system

3.1. Problem formulation

Computational targets in our study are shown in Fig. 1. Fig. 1 is a correlation map (Bhaga and
Weber, 1981) relating terminal bubble shape to three dimensionless numbers: Re(=qLDV/lL, D:
bubble diameter, V: bubble rise speed), Eo(=DqD2g/r, Dq: qL � qG) and Mð¼ Dql4

Lg=q
2
Lr

3Þ: In
Fig. 1, the black circles, squares and triangles are calculated points. The black squares show that
the toroidal bubble could be numerically obtained when we started the computations from a
spherical bubble. The black circles and triangles mean that we could obtain bubbles with an
appropriate shape from the computations of a spherical bubble. For the triangle points, we



Fig. 1. The graphical correlation on bubble rise motion by Bhaga and Weber (1981).
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compared our computations to previous experimental and numerical results. We will analyze all
results in Chapter 4. In our study, physical properties of real gas–liquid systems were introduced
in the computations. To be more precise, we used physical properties of silicone oil–air and min-
eral oil–air systems as two-phase fluids: silicone oil 10–air (M = 9.9 · 10�6), silicone oil 100–air
(M = 9.6 · 10�2), silicone oil 1000–air (M = 9.4 · 102) and mineral oil–air (M = 6.5 · 10�2) flu-
ids. The silicone oil fluids are manufactured by Shin-Etsu Chemical Co., Ltd., and we have fre-
quently used them in our experiments (e.g., Ohta et al., 2003). The mineral oil–air system was
quoted from the study of Hnat and Buckmaster (1976). For such fluid systems, the density ratio
between phases was on the order of about 800 and the viscosity ratio reached �50,000. The com-
putational domain for the 2d-axisymmetric computations is indicated schematically in Fig. 2. The
computational domain has a r-directional dimensionless length L (=1.5) and a z-directional
dimensionless height H (=4.5).
The chief purpose in this study is to examine the influence of initial bubble conditions on the

final state of bubble rising motion. To achieve our goal, we shall consider bubble motions in
which computations are either started from a spherical bubble or from deformed bubbles. In
Fig. 2. Computational system.
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beginning with a spherical bubble, as shown in Fig. 2, the spherical bubble was artificially imposed
at the midpoint of the z-axis in the initial setting. Also, in order to establish a deformed initial
bubble geometry, other than that of the spherical bubble, we started our computations using data
from a previous computation of a deformed bubble. Details of these conditions will be illustrated
in Chapter 4.

3.2. Numerical conditions

In the computations, conventional fixed grid algorithms require excessive computational
resources (e.g., CPU speed and memory). We use adaptive mesh refinement (AMR) (Sussman
et al., 1999) which allows us to save on computational resources by dynamically placing fine grids
at the bubble interface. AMR enables us to increase the grid resolution at the regions near the
interface. Fig. 3 shows a schematic diagram of the AMR system. The left side of Fig. 3 is an exam-
ple of the grid structure in the AMR system. The right side of Fig. 3 is a computational example
for a 2d-axisymmetric bubble using the AMR system. The mesh hierarchy is composed of different
levels of refinement ranging from coarsest (‘ = 0, we label as ‘‘Level 0’’) to finest (‘ = ‘max). In Fig.
3, three levels (Level 0, Level 1 and Level 2) are indicated and the refinement ratio between the
levels is two. Thus we have Dx‘+1 = 0.5Dx‘. In order to validate our numerical scheme, we per-
formed grid refinement studies for the bubbles with Eo = 907, M = 9.4 · 102 (D = 4.5 ·
10�2 m) and Eo = 182, M = 9.9 · 10�6 (D = 2.0 · 10�2 m). The reason for the choice of
Eo = 907, M = 9.4 · 102 (D = 4.5 · 10�2 m) is that it is the largest diameter in our study and
the final shape of the bubble is considerably deformed (skirted bubble) based on Fig. 1. The rea-
son why we selected Eo = 182,M = 9.9 · 10�6 (D = 2.0 · 10�2 m) is that this system has the larg-
est Re value. Note that the results for Eo = 182,M = 9.9 · 10�6 (D = 2.0 · 10�2 m) were obtained
in starting from a deformed initial bubble. As is shown in Fig. 4, the computed Re number
depending on dimensionless time (=tV/D) is converged when going from a coarse grid computa-
tion (dimensionless mesh size, Dx‘max ¼ 1:17� 10�2) to a fine grid computation (dimensionless
mesh size, Dx‘max ¼ 5:9� 10�3). As a result, we can conclude that our study performed using a
dimensionless mesh size less than Dx‘max ¼ 1:17� 10�2 is a sufficiently sound system. We note that,
Fig. 3. Grid structure using the AMR system.
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for a dimensionless mesh size of 1.17 · 10�2, there are about 85 cells per bubble diameter. The
physical boundary conditions for our bubble computations were as follows: inflow at the top wall,
outflow boundaries at the bottom and right walls, and reflecting boundary condition at the axi-
symmetric center (r = 0).
4. Results and discussion

4.1. Validation against established numerical and experimental results

First, we validated our numerical method by comparing to previous numerical and experimen-
tal results. Fig. 5 shows comparison for five cases expressed by the triangles in Fig. 1: (a) the con-
dition of Re = 50, We (=qLV

2D/r) = 4 presented by Ryskin and Leal (1984); (b) the condition of
Re = 100, We = 10 presented by Ryskin and Leal (1984); (c) the condition of Eo = 116, M = 5.5
presented by Bhaga and Weber (1981); (d) the condition of Eo = 39,M = 6.5 · 10�2 presented by
Fig. 5. Comparisons of our numerical results with numerical and experimental results in the prevailing literature.
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Hnat and Buckmaster (1976); and (e) the condition of Eo = 73, M = 6.5 · 10�2 by Hnat and
Buckmaster (1976). The left side is the computational result for cases (a) and (b), and the compu-
tational result is drawn at the right side for the other cases. All the numerical results shown in Fig.
5 were obtained using e = 1.0Dx and a spherical initial bubble. As is clear from Fig. 5, our numer-
ical results of the bubble shape agree well with previous numerical and experimental results. In
regard to Re, our computed Re values divided by Re values of the previous studies were 1.004
for case (a), 0.919 for case (b), 1.068 for case (c), 0.979 for case (d) and 0.970 for case (e). Thus,
it can be confirmed that our computational method is in very good match with previous results
(bubbles except for high Eo and low M areas).

4.2. Rising bubbles except for high Eo and low M areas

Fig. 6 presents a number of snapshots of bubble shapes except for high Eo and lowM (‘‘spher-
ical-cap’’ bubble) regions after enough time has passed and the bubble shape has reached its ter-
minal shape. All the results shown in Fig. 6 were obtained computationally using the initial
condition of a spherical bubble shape. The numerical thickness conditions of e = 2.0Dx or
3.0Dx were used for these computations. One example is shown in Fig. 6 that lies in the high
Eo and low M (Eo = 182 and M = 9.9 · 10�6) region. In the case of Eo = 182 and
Fig. 6. Computational results for a variety of bubble rise motions.
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M = 9.9 · 10�6, it can be seen that the bubble begins to break up at the center (toroidal bubble);
we will discuss results for high Eo and lowM areas (the points marked by the squares in Fig. 1) in
the next section. In general, the numerically predicted shapes are in good agreement with the dia-
gram of Bhaga and Weber (1981) (Fig. 1): ‘‘oblate ellipsoid’’ bubble for Eo = 1.8,M = 9.9 · 10�6
and Eo = 7.2, M = 9.6 · 10�2; ‘‘disk-like’’ bubble for Eo = 16, M = 9.9 · 10�6; ‘‘skirted’’ bubble
for Eo = 403 and 907, M = 9.4 · 102; ‘‘oblate ellipsoidal cap’’ bubble for Eo = 16 and 45,
M = 9.6 · 10�2, Eo = 179, M = 9.4 · 102. For ‘‘oblate ellipsoidal cap’’ bubble area, the bubble
terminal shape can depend on Eo and M numbers. The bubble shape result for Eo = 179 and
M = 9.4 · 102 is closer to a ‘‘dimpled ellipsoidal-cap’’ bubble presented by Grace et al. (1976) in-
stead of ‘‘oblate ellipsoidal cap’’ bubble as predicted in Fig. 1. In Fig. 7, we present the compar-
ison of the Re number for the results shown in Figs. 5 and 6. The black circles denote values
obtained by the computations. As is clear from Fig. 7, our computed values for Re agree well with
the observed values of Re.

4.3. Rising bubbles for ‘‘spherical-cap’’ bubble areas

In this section, we examine the effect of initial flow conditions on the resulting terminal bubble
motion for ‘‘spherical-cap’’ bubble areas. As we have already shown in Fig. 6, the toroidal bubble
for the condition of Eo = 182,M = 9.9 · 10�6 was reproduced numerically in starting the compu-
tation from the spherical shape. Fig. 8 shows numerical results obtained by changing initial bub-
ble conditions. The computational targets (conditions of the dimensionless parameters) are the
black squares shown in Fig. 1: (1) Eo = 464, M = 6.5 · 10�2 (one condition of the experiments
by Hnat and Buckmaster (1976)); and (2) Eo = 182, M = 9.9 · 10�6. In Fig. 8, three kinds of ini-
tial bubble shapes are presented: the spherical bubble (condition 1) and deformed bubbles (con-
ditions 2 and 3). For the two deformed bubble conditions, we performed our computations using
data from previous computations of oblate ellipsoidal cap bubbles. We note that our initial con-
ditions of a spherical bubble, or our initial conditions 2 and 3, are ideal conditions; but the point
we wish to emphasize is that we can clearly establish the dependence of the initial flow condition
on bubble motion. The computations in Fig. 8 were made using an interface thickness of
e = 1.0Dx. We remark that we had to be careful to compute on a sufficiently fine mesh so that
the absolute interface numerical thickness, e, was small enough in order to resolve the bubble



Fig. 8. Computational results of bubble rise motion depending on initial conditions for spherical-cap region.
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dynamics. An underresolved calculation might result in a skirted bubble instead of a cap bubble.
Also, an underresolved calculation might result in a toroidal bubble instead of an unsteady cap
bubble. In all of our calculations, we verified the convergence of our results through grid refine-
ment studies and through studies in which the interfacial thickness parameter, e, is varied. Here,
we illustrate examples of the dependency of the absolute interface numerical thickness on bubble
shape in Fig. 9. In Fig. 9, three sets of figures with different interface numerical thicknesses are
shown for each Eo and M condition. As for the case of Eo = 182, M = 9.9 · 10�6 (started from
condition 2), it is obvious that the final bubble states are independent of the interface numerical
thickness. The same fact was applicable to computations started from condition 3 (the terminal
bubble shape is a toroidal bubble for condition 3). The results for the case of Eo = 464,
M = 6.5 · 10�2 are slightly influenced by the interface numerical thickness as seen in Fig. 9. That
is, the thickness of the skirted part becomes thinner as the absolute interface numerical thickness
decreases, and it is expected that the skirted part will disappear as the mesh size Dx‘max approaches
0. We observed the same ‘‘skirt thinning’’ phenomena for the case of Eo = 464, M = 6.5 · 10�2
using condition 3. For results started from condition 1, the bubbles break up at the center irre-
gardless of the interface numerical thickness. In Fig. 8, what the numerical results make clear
is that the final state of bubble motion is affected by the initial conditions. That is, we can verify
that the bubble rise motion greatly depends on the initial conditions. For all the Eo and M con-
ditions shown in Fig. 8 (unsteady cap region), the bubbles finally break up at the center when the
computations are started from condition 1. Meanwhile, the bubbles never break up at the center
when the computations are started using condition 2. The final state in these cases become a cap-
shaped bubble. In contrast to the results for conditions 1 and 2, the results obtained using
condition 3 depend on Eo and M conditions. In the case of condition 3 for Eo = 181,



Fig. 9. The dependency of the absolute interface numerical thickness on bubble shape for spherical-cap region.
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M = 9.6 · 10�2, the bubble breaks up at the center as is the case with condition 1. On the other
hand, we obtain bubbles without break-up for Eo = 464, M = 6.5 · 10�2. In fact, for Eo = 464,
M = 6.5 · 10�2, the resulting terminal bubble shape is independent of whether the bubble is
started from condition 2 or 3, of course, with a spherical initial condition (condition 1), the ter-
minal shape is unsteady and becomes a toroid. We remark that the terminal velocity (computed
Re) is independent of whether the bubble (Eo = 464, M = 6.5 · 10�2) was started from condition
2 or 3.
Fig. 10 shows the comparison of computed and experimental Re numbers corresponding to the

results in Fig. 8, except for the toroidal bubbles. The black squares are new points. It can be seen
that the computed values for Re including the new points are a good match with the experimental
values for Re.

4.4. Effect of initial flow conditions except for ‘‘spherical-cap’’ bubble areas

In Section 4.3, we considered the effect of initial flow conditions on the terminal bubble shape
for high Eo and lowM conditions where toroidal bubbles were reproduced numerically in starting
from the spherical bubble condition. In this section, we shall focus on the effect of initial flow con-
ditions for the conditions where the bubble rise motion predicted in Fig. 1 was able to be repro-
duced numerically using the spherical bubble condition. Fig. 11 shows the numerical results
depending on three initial bubble conditions (the spherical bubble (condition 1) and deformed
bubbles (conditions 2 and 3).) The bubble conditions in terms of the dimensionless numbers,
Eo and M, are (1) Eo = 1.8, M = 9.9 · 10�6; and (2) Eo = 16, M = 9.6 · 10�2. From Fig. 11, it
can be concluded that the final terminal bubble shape does not have a dependence on flow con-



100

101

102

103

100 101 102 103

R
e (

C
al

.)
   

[-
]

Re(Exp.)   [-]

Fig. 10. Comparison of computed and experimental Re including the results for spherical-cap region.

Fig. 11. Computational results of bubble rise motion depending on initial conditions for the cases where reasonable
results were able to be obtained numerically using the spherical bubble condition.

M. Ohta et al. / International Journal of Multiphase Flow 31 (2005) 223–237 235
ditions in the low Eo and high M areas. Furthermore, we observed that the terminal bubble rise
speed is independent of the initial flow conditions. Making a comprehensive assessment of the ef-
fect of initial conditions for low Eo and relatively highM areas, we can expect that bubble motion
is not subject to the initial bubble conditions. Therefore, in the region of low Eo, high M, of the
graphical correlation in Fig. 1, the bubble motion is independent of the initial conditions.
Although we have only considered 2d, axisymmetric bubbles, as opposed to 3d bubbles, we

have proved sufficiently in this study that bubble motion is dependent on the initial conditions
for ‘‘spherical-cap’’ bubble areas (high Eo, low M).
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5. Conclusions

We numerically considered the effect of initial bubble conditions on the resulting motion of a
2d-axisymmetric bubble rising in viscous Newtonian liquids using the CLSVOF method. As a re-
sult, it was shown that the motion of rising bubbles for ‘‘spherical-cap’’ bubble areas (high Eo and
low M conditions) were influenced by the initial bubble conditions. That is, for these regions, we
found some solutions to depend on initial bubble conditions/geometry: for the conditions of
Eo = 464, M = 6.5 · 10�2 and Eo = 182, M = 9.9 · 10�6, the results of ‘‘spherical-cap’’ shape
could be obtained when computations were started from deformed bubbles, and the bubbles with
break-up could be numerically reproduced in starting from the spherical bubble. Regarding the
regions except for spherical-cap bubble areas and 3d-nonlinear motion areas (very low M condi-
tion), we can say that bubble motion is not subject to the initial bubble conditions. In the dimen-
sionless region of low Eo and very low M, it will be necessary to perform fully 3d-computations
instead of the 2d-axisymmetric computations performed in this paper.
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